28 research outputs found

    Hands-free wearable system for helping in assembly tasks in aerospace

    Get PDF
    Las operaciones de mantenimiento tienen un gran impacto en la seguridad y esperanza de vida de cualquier producto, especialmente en ciertas aplicaciones dentro de la industria aeron谩utica que tiene que pasar procedimientos muy rigurosos de seguridad. Los sistemas de ayuda llevables (wearable) pueden ayudar a reducir costes y tiempo de trabajo guiando a los operarios en tareas dif铆ciles. El prop贸sito de este trabajo es presentar un sistema de guiado de manos libre y llevable para soporte y ayuda de operarios en tareas de ensamblaje y verificaci贸n dentro del campo de la aeron谩utica. El operario es capaz de pedir informaci贸n al sistema sobre una tarea espec铆fica de un modo no invasivo as铆 como pedir asistencia t茅cnica al l铆der del equipo. El sistema desarrollado ha sido probado en una compa帽铆a aeron谩utica (Airbus Military) y se ha evaluado su implementaci贸n en ciertas tareas de ensamblaje. La conclusi贸n de las pruebas ha sido que el sistema ayuda a los operarios a realizar sus tareas de una manera m谩s r谩pida, precisa y segura.Maintenance operations have a great impact on the safety and life expectancy of any product. This is especially true for certain applications within the aerospace industry, which must pass rigorous security checking procedures. Wearable helping systems can help to reduce costs and working time by guiding workers in some specifi c and diffi cult tasks. The purpose of this work is developing a handless and wearable guided system that supports and helps workers in assembly and verifi cation tasks within the aeronautic fi eld. The worker is able to request information for the specifi c task in a non invasive way and also ask the Team Leader for real time technical support and assistance. The system developed has been tested in an aeronautic company (Airbus Military) and its implementation in specifi c assembly tasks assessed. It was found that the proposed system can help workers to make their tasks faster, more accurate and more secure

    Rigid and Deformable Collision Handling for a Haptic Neurosurgery Simulator.

    Get PDF
    Simulation has been widely used for training and rehearsing difficult or unusual actions in several fields such as aviation and the military. However, the simulators available in some disciplines do not fulfil the requirements of reliability and accuracy that users demand. This happens in neurosurgery. In order to overcome these difficulties, this thesis presents a multimodal Neurosurgery Simulator focused on patient-specific surgical learning and training. One of the aspects that most influences the behavioural reality of a simulator is the way in which the scene objects interfere. For that reason, detecting collisions and giving them a feasible response is particularly important. This work presents the collision handling methods for rigid and deformable volumetric objects and their haptic response to be integrated into the Neurosurgery Simulator. With the aim of evaluating our methods in terms of continuity and stability, the present document analyses the time consumption of the collision handling algorithms and the stability of the force parameters they return. Real-time virtual reality simulators require accuracy but are also time dependent. Thus, their computational cost is a vital aspect. This thesis also proposes a methodology to optimize the time consumption of collision detection algorithms that are based on the uniform spatial partition technique. It is validated experimentally and compared to other approaches. Additionally, the optimization is applied to our deformable collision detection method in order to improve its performance

    Improving the pipeline of an optical metrology system.

    Get PDF
    Metrology is one of the many applications of machine vision, which has the advantage that allows for the analyzing of a total production batch that leaves an assembly line without supposing a bottleneck. As a result, quality control become a priority in the inspection processes of industrial manufacturing. Due to the advancement of technology and the realizations of Industry 4.0, smart factories demand high precision and accuracy in the measurements and inspection of industrial products. Machine vision technology provide image-based inspection and analysis for such demanding applications. With the use of software, sensors, cameras and robot guidance, such integrated systems can be realized. Machine vision highlights a growing trend in industrial systems. As camera sensors become smarter, the quality of data produced offers accuracy into the systems operations. This thesis is a study of the typical vision system pipeline, in the different phases, necessary to achieve optimal inspection in an industrial operation. The first step is the study of the light alignment to monitor and achieve an optimal light alignment system, in order to eliminate the effects of misalignment. The algorithm was tested with a not-optimal system to ascertain its efficiency and effectiveness. In the second phase, a deep study of the calibration process is carried out to address the effect of different parameters as the camera focus among others. Endocentric and telecentric lenses are used in the image acquisition and a comparative analysis is obtained using a multivariable statistical analysis to study the influence of each parameter in the calibration process: camera focus, exposure time, calibration plate tilt and number of images used. In the third proposal, an object alignment algorithm is developed to address the challenge of object alignment during a measurement process. Object plane alignment is key point for achieving good repeatability of object measurements in all orientations. A complete study of the impact of every single pipeline phase is carried out in the proposals validation chapter. Finally, a complete 2D machine vision application is developed to determine the precise measurement of gears, at subpixel level, with the potential to improve quality control, reduce downtime and optimize the inspection process. The calibrated vision system was verified by measuring a ground-truth sample gear in a Coordinate Measuring Machine (CMM), using the parameter generated as the nominal value of the outer diameter. A methodical study of the global uncertainty associated with the process is carried out in order to know better the admissible zone for accepting gears. This thesis try to reach the optimal values in every single phase of the pipeline in order to improve the accuracy of the inspection. The different studies and algorithms developed in this thesis show that it is worthwhile to invest on achieving the optimal values during the different phases of an industrial inspection process.La metrolog铆a es una de las muchas aplicaciones de la visi贸n artificial que tiene la ventaja de permitir el an谩lisis dimensional de un lote completo de producci贸n que sale de una l铆nea de ensamblaje sin suponer un cuello de botella. Gracias a su potencial, el control de calidad se convierte en una prioridad en los procesos de inspecci贸n de la fabricaci贸n industrial. Debido al avance de la tecnolog铆a y el auge de la Industria 4.0, las f谩bricas inteligentes exigen alta precisi贸n y exactitud en las mediciones e inspecci贸n de productos industriales. La tecnolog铆a de visi贸n artificial proporciona inspecci贸n y an谩lisis basados en im谩genes. Con el uso de software, sensores, c谩maras, 贸pticas, luminarias y gu铆a de robots, estos sistemas integrados permiten realizar inspecciones flexibles, sin contacto y llegando en muchos casos al 100% de la producci贸n. En esta tesis se analizan las diferentes fases del pipeline 贸ptico cl谩sico de un sistema de visi贸n, estudiando las configuraciones que permiten optimizar la inspecci贸n. El primer paso es el estudio de la alineaci贸n lente-luz para monitorizar y lograr un sistema 贸ptimo de alineaci贸n. El algoritmo se ha probado con diferentes configuraciones de alineamiento para determinar su efectividad. En la segunda fase del pipeline, se realiza un estudio profundo del proceso de calibraci贸n para abordar el efecto de diferentes par谩metros como el enfoque de la c谩mara, tiempo de exposici贸n y n煤mero e inclinaci贸n de las im谩genes. Se realiza un an谩lisis estad铆stico multivariable para estudiar la influencia de cada par谩metro en el proceso de calibraci贸n. En la tercera propuesta, se desarrolla un algoritmo de alineaci贸n de objetos para abordar el problema de posibles desalineamientos durante un proceso de medici贸n. En el cap铆tulo de validaci贸n de propuestas se realiza un estudio completo del impacto de cada fase del pipeline. Los diferentes estudios y algoritmos desarrollados en esta tesis demuestran que merece la pena realizar la b煤squeda de las configuraciones 贸ptimas en cada fase del pipeline ya que se comprueba que hay mejora estad铆stica en el proceso. Finalmente, se ha desarrollado una aplicaci贸n completa de visi贸n artificial en 2D para determinar la medici贸n precisa de engranajes, a nivel de subp铆xeles, con el potencial de mejorar el control de calidad, reducir el tiempo de inactividad y optimizar el proceso de inspecci贸n. El sistema de visi贸n calibrado se ha verificado midiendo un engranaje ground-truth en una m谩quina de medici贸n de coordinadas (CMM), utilizando esta medida como valor nominal. Se ha llevado a cabo un estudio met贸dico de la incertidumbre global asociada con el proceso de medici贸n

    Rigid and Deformable Collision Handling for a Haptic Neurosurgery Simulator.

    No full text
    Simulation has been widely used for training and rehearsing difficult or unusual actions in several fields such as aviation and the military. However, the simulators available in some disciplines do not fulfil the requirements of reliability and accuracy that users demand. This happens in neurosurgery. In order to overcome these difficulties, this thesis presents a multimodal Neurosurgery Simulator focused on patient-specific surgical learning and training. One of the aspects that most influences the behavioural reality of a simulator is the way in which the scene objects interfere. For that reason, detecting collisions and giving them a feasible response is particularly important. This work presents the collision handling methods for rigid and deformable volumetric objects and their haptic response to be integrated into the Neurosurgery Simulator. With the aim of evaluating our methods in terms of continuity and stability, the present document analyses the time consumption of the collision handling algorithms and the stability of the force parameters they return. Real-time virtual reality simulators require accuracy but are also time dependent. Thus, their computational cost is a vital aspect. This thesis also proposes a methodology to optimize the time consumption of collision detection algorithms that are based on the uniform spatial partition technique. It is validated experimentally and compared to other approaches. Additionally, the optimization is applied to our deformable collision detection method in order to improve its performance

    Rigid and Deformable Collision Handling for a Haptic Neurosurgery Simulator.

    No full text
    Simulation has been widely used for training and rehearsing difficult or unusual actions in several fields such as aviation and the military. However, the simulators available in some disciplines do not fulfil the requirements of reliability and accuracy that users demand. This happens in neurosurgery. In order to overcome these difficulties, this thesis presents a multimodal Neurosurgery Simulator focused on patient-specific surgical learning and training. One of the aspects that most influences the behavioural reality of a simulator is the way in which the scene objects interfere. For that reason, detecting collisions and giving them a feasible response is particularly important. This work presents the collision handling methods for rigid and deformable volumetric objects and their haptic response to be integrated into the Neurosurgery Simulator. With the aim of evaluating our methods in terms of continuity and stability, the present document analyses the time consumption of the collision handling algorithms and the stability of the force parameters they return. Real-time virtual reality simulators require accuracy but are also time dependent. Thus, their computational cost is a vital aspect. This thesis also proposes a methodology to optimize the time consumption of collision detection algorithms that are based on the uniform spatial partition technique. It is validated experimentally and compared to other approaches. Additionally, the optimization is applied to our deformable collision detection method in order to improve its performance

    Study of Augmented Reality Methods for Real Time Recognition and Tracking of Untextured 3D Models in Monocular Images.

    Get PDF
    The main challenge of an augmented reality system is to obtain perfect alignment between real and virtual objects in order to create the illusion that both worlds coexist. To that end, the position and orientation of the observer has to be determined in order to configure a virtual camera that displays the virtual objects in their corresponding position. This problem is known as tracking, and although there are many alternatives to address it by using different sensors, tracking based on optical sensors is the most popular solution. However, optical tracking is not a solved problem. This thesis presents a study of the existing optical tracking methods and provides some improvements for some of them, particularly for those that are real time. More precisely, monocular optical marker tracking and model-based monocular optical markerless tracking are discussed in detail. The proposed improvements are focused on industrial environments, which is a difficult challenge due to the lack of texture in these scenes. Monocular optical marker tracking methods do not support occlusions, so this thesis proposes two alternatives: (1) a new tracking method based on temporal coherence, and (2) a new marker design. Both solutions are robust against occlusions and do not require more environment adaptation. Similarly, the response of model-based monocular optical markerless tracking methods is jeopardized in untextured scenes, so this thesis proposes a 3D object recognition method that uses geometric properties instead of texture to initialize the tracking, as well as a markerless tracking method that uses multiple visual cues to update the tracking. Additionally, the details of the augmented reality system that has been developed to help in disassembly operations are given throughout the thesis. This serves as a tool to validate the proposed methods and it also shows their real world applicability

    Interacci贸n en Sistemas H谩pticos Multisensoriales: Respuesta de Colisi贸n y Mejoras de Usabilidad

    No full text
    Las aplicaciones de Realidad Virtual son cada vez m谩s frecuentes en 谩reas como la industria o la medicina ya que pueden utilizarse como herramientas de trabajo o de aprendizaje. La necesidad actual de que estos sistemas sean cada vez m谩s realistas obliga a introducir el sentido del tacto aumentando de forma considerable la precisi贸n y eficiencia con la que pueden desarrollarse las tareas adem谩s de la inmersi贸n de los usuarios en este tipo de entornos. Los dispositivos h谩pticos permiten al usuario interactuar con objetos del entorno virtual a trav茅s del sentido del tacto percibiendo una respuesta de fuerza a cualquier colisi贸n con el entorno. Sin embargo, esta tecnolog铆a h谩ptica es todav铆a reciente lo que no permite obtener una respuesta estable y realista en casos complejos. La presente Tesis investiga y ofrece soluciones en dos 谩reas fundamentales de la h谩ptica: el c谩lculo de las fuerzas y pares de contacto como resultado de las acciones de los usuarios en entornos virtuales y la percepci贸n multisensorial. La detecci贸n y respuesta de colisi贸n en tiempo real es una tarea complicada y esencial para la efectividad de estos sistemas h谩pticos. Este trabajo desarrolla un m茅todo de renderizado h谩ptico capaz de calcular una respuesta h谩ptica estable y agradable incluso en situaciones complejas tales como las tareas de desensamblado en entornos aeron谩uticos. Adem谩s, se analiza la eficacia de combinar los distintos canales sensoriales disponibles para mejorar la percepci贸n global del sistema as铆 como la inmersi贸n final del usuario

    Study of Augmented Reality Methods for Real Time Recognition and Tracking of Untextured 3D Models in Monocular Images.

    No full text
    The main challenge of an augmented reality system is to obtain perfect alignment between real and virtual objects in order to create the illusion that both worlds coexist. To that end, the position and orientation of the observer has to be determined in order to configure a virtual camera that displays the virtual objects in their corresponding position. This problem is known as tracking, and although there are many alternatives to address it by using different sensors, tracking based on optical sensors is the most popular solution. However, optical tracking is not a solved problem. This thesis presents a study of the existing optical tracking methods and provides some improvements for some of them, particularly for those that are real time. More precisely, monocular optical marker tracking and model-based monocular optical markerless tracking are discussed in detail. The proposed improvements are focused on industrial environments, which is a difficult challenge due to the lack of texture in these scenes. Monocular optical marker tracking methods do not support occlusions, so this thesis proposes two alternatives: (1) a new tracking method based on temporal coherence, and (2) a new marker design. Both solutions are robust against occlusions and do not require more environment adaptation. Similarly, the response of model-based monocular optical markerless tracking methods is jeopardized in untextured scenes, so this thesis proposes a 3D object recognition method that uses geometric properties instead of texture to initialize the tracking, as well as a markerless tracking method that uses multiple visual cues to update the tracking. Additionally, the details of the augmented reality system that has been developed to help in disassembly operations are given throughout the thesis. This serves as a tool to validate the proposed methods and it also shows their real world applicability
    corecore